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Abstract. We show that the cotangentbundle T*TA(of the tangentbundle of
any differentiable manifold A! carries an integrable almost tangent structure
which is generatedby a natural lifting procedurefrom thecanonicalalmosttangent
structure(vertical endomorphism)of TA! Using this almosttangentstructurewe
show that T*TA1’is diffeomorphicto a tangent bundle, namely TT~I1.This
providesa new andgeometricallyinstructiveproof of a resultof Tulczyjew,which
has applications in Lagrangian and Hamiltonian dynamicsand in field theory.
The requisitegeneraldefinitionsandresultsconcerningliftings ofgeometricobjects
from a manifold to its cotangentbundlearegiven.As an application,weshednew
light on the meaningof so-calledadjoint symmetriesof second-orderdifferential
equations.

1. INTRODUCTION

In a recent paper [1] we have investigatedthe curious fact that an arbitrary

system of second-orderordinary differential equationsmay be given both a
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Lagrangianand a Hamiltoniall formulation, with essentiallythe samefunction

serving as both Lagrangian and Harniltonian for the system, by the introduc-

tion of additional variables. Our analysisbegan with the observationthat the

systemof differential equationsdefined by a vector field on a differential mani-
fold .A1 may be embeddedin a system of Hamiltonian equations by taking

the complete lift of the vector field to the cotangentbundle T* ~4~TWe applied

this construction in the case where ,iV is already the tangentbundle of a mani-

fold Al and the given vector field a second-orderequationfield. In order to

obtain the Lagrangianformulation it was necessaryto find an appropriatemani-

fold with the structure of a tangentbundle related to both TA! and T*TA/.

Now T*T .,llis not itself a tangentbundle, of course;but it happensto be glo-

bally diffeomorphic to TT*...11, and this fact played a key role in our further

investigations.

The existence of the diffeomorphism T*T./# ~ TT* A! was demonstrated

by Tulczyjew [15, 16], though it is not perhapsso well-known as it might be.

Our principal aim in this paperis to give a newproof of this resultusingentirely

different methods,oneswhich we believe are geometricallymore instructiveand

appealing.The approachwe take to the study of thegeometryof tangentand

cotangentbundles dependsvery much on exploiting the propertiesof the cano-

nical geometricobjects associatedwith them. The obvious example of suchan

object is the canonical 1 -form on the cotangentbundle, froni which its symplec-

tic structure is derived. A somewhatanalogousrole is played in the caseof a

tangent bundle by its vertical endomorphism or almost tangentstructure.This

is a type (1, 1) tensor field whosekernel, as a linear map of tangent vectors,

concideswith its imageand is just the vertical subspaceat eachpoint, andwhich

is integrablein the sensethat its Nijenhuis tensorvanishes[2. 3, 4]. In addition

eachof thesemanifolds carriesa canonically defined vector field, as does any

vector bundle: namely, its dilation field, which is the infinitesimal generatorof

dilations of the fibres.
As a prerequisite for our analysis, we need various techniques for lifting

objects from a manifold .yY to its cotangentbundle T*.jV Most of thesehave

been described by Yano and Ishihara [18]. However, we find their approach

rather hard going and presenttherefore, in Sections2 and 3, a new version of

this theory, with different methods of proof which~do not rely on coordinate

calculations. in Section 4 we specialiseto the casewhere .iY = T..Handarrive

at the main result of this paper:a geometrically constructiveproof of the dif-

feomorphism T*TAl_~*TT*Al. As a by-product of the techniquesused in the

proof, it becomesvery simple to showthat the fibration of T*T.#which gives

rise to a tangentbundle structure is actually Lagrangianand hasa Lagrangian

cross-section.We therefore thought it instructive to make a digressionto discuss
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this point: we show how to constructa global symplectomorphismfrom T*TA!

to ~ using in part a theoremof Weinstein[17]. The proofof this result

appearsin an appendix.The main part of the papercontinueswith a sectionon
dilattion fields and anothergiving coordinateexpressionsfor mostof the cons-
tructionswe havebeendealingwith.

In Section 7 we commenton applications.It is fair to say that Tulczyjew’s
unification of Lagrangian and Hamiltonian mechanics [15, 16] relies a great

dealon the diffeomorphismT*TA! -+ TT*A1 . Anotherapplicationis our descrip-
tion of the Lagrangianextensionof an arbitrary second-ordersystem, referred

to above.We believe, however,that thereyet is moreto be gainedfrom lifting
objects to a tangentor cotangentbundle:suchoperationsmayhelp to understand
the cohesionbetweendifferent resultsor may occasionallylead t® thediscovery

of new properties.As an illustration of this idea we show that some rathersur-

prising resultson adjoint symmetriesof second-ordersystemson T./l1, derivedin
[12], becomeperfectlyplausiblewhenonerecognizesthat theyaremanifestations
of known propertiesconcerning the Lagrangianextensionon T*TA!.

Our notationis more-or-lessstandard;but we shouldwarn thereaderthat we
do not distinguishnotationallybetweenthe linear actionof a type (1, 1) tensor
on covectorsand its actionon vectors.

2. LIFTSTO THE COTANGENTBUNDLE

We begin by describingvariouslifts from an arbitrary differentiablemanifold
..JV to its cotangentbundle~ : T*.A~”_*.A~’.

We assumethat the following lifting constructionsarealreadyknown:

thevertical lift a~’of a 1-formaon

the completelift X of a vectorfield X on

togetherwith thefollowing formulae:

[aL),~3Uj=O

[~ ~ = (~~~xa)v

[X, Y] = [X, Y].

The vector fields obtainedin this way span the vectorfields on T* A”; we use

this fact repeatedlyin the sequelas a meansof specifyinggeometricobjectson
T*,iV explicitly.

The vertical lifts of 1-forms and completelifts of vectorfields are relatedto
the canonical1-formO~ of T*A1 asfollows:
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(~tV,O4~) = 0, (O~ ) =

where denotesthe fIbre linear function on T*..A/ determinedby X:

hx(x, p) = P)

We also have ~ = 7r.~.~ and‘2’,~O~. = 0, from which the following for-

mulaeareeasilyderived:

dO4~(ctU,l3U)=0

dO~(~v x) = ctv(Ilx) = 7~4~~(X, ct)

dO4JX, Y)h1xy1.

We shall be concernedwith two different waysof lifting a type (1, 1) tensor

field from .A
1 to T* ,,41 the first of which, now to be described,results in a

verticalvector field. Let R he a type (1, 1) tensorfield on Ar. For eachx E A1,

R determinesa linear endornorphismR~of the cotangentspaceT~’.iY~Let p~.

be theone-parametergroupof transformationsof T* .iV given by

tR~

p~(x,p) = (x, e
The generatorof p~.is a vertical field on T*.iY which we call the vertical lift of

R anddenoteby RU.

The vertical lifts of 1 -forms and type (1, 1) tensorfields to T* .A’~arederived

from the action of the affine group in the fibres, eachof which is of coursea

vector space.The bracket relations betweenvertical lifts essentiallyreproduce

the Lie algebrastructureof theaffine group:

[ctU,j3U1= 0

[c~,R°] =R(ct)°

[QVRUI = [Q,R]~

where [Q,R] representsthe commutatorof Q and R derivedfrom their actions

on vectors. The bracket of a completelift of a vectorfield and the vertical lift
of a type (1, 1) tensor field may be computedfrom considerationof the flows

they generate,andis givenby

[~,RU] = (~~xThU.

By consideringtheactionof p~.it is easyto showthat

R~’ ~
~ X’ R(X)

Furthermore
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dO~(Ru, av) = 0

dOt. (Rv,X) =R°(X,O~.)..._([RV X]O~,- )

=Ru(hx)+((~xR)v,O,v)

= hR(x).

3. COMPLETE LIFTS OF TYPE (1, 1) TENSOR FIELDS

We next define another lift of a type (1, 1) tensor field on .A”’to T*.JV, which
leads this time to a type (1, 1) tensorfield again,ratherthan to a vectorfield.

The constructionis basedon the non-degeneracyof dO~and the possibility of
using it, as a consequence,to convert 2-forms(or, in general,type (0, 2) tensor
fields) into type (1, 1) tensorfields, in the mannerof raising an index with a
metric.

Any type (1, 1) tensorfield R on Ar determinesa map TR : T*A1 —* T*Ar,
which is fibre linear andfibred over theidentity, by

TR(x, p) = (x, R~p);

the completelift .~ ofR to T*.AI is the type (1, 1) tensorfield definedby

LR( f) dO = t~(rR * dO4~-)

where denotesthe interior product.

The map TR is just the map whoseexponentialwas usedto definethevertical
lift of R. It follows that R satisfies

LRU) dO,,. = Lt(

2’ dO~,).

The tensor.~ may be specified explicitly by evaluatingit on the vertical lift
of a I-form andon the completelift of avectorfield, asfollows.

THEOREM 1. For any 1-form a and J’ector field X on Ar

R(ctv)= R(a)°

R(X) = R(X) +

Proof The proof consistsessentiallyof repeatedapplicationsof the preceeding

formula. To obtainthe secondresultwe usethis formula with ~ = X.

do
4 (R(X), ~U) =

2Ru(dO~

4.(X, /3u))

+ dO4~((2’~RY~,1~)+ dO ~ ( R(f~)
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= dO4.(~,R($)V)
= — it 4.,,(X, R(~))

= — it 4.5(R(X),i3)

= dO~(R(X),~fl.

On the otherhand

do4 (R(,3t’), )‘~= RLL4~’ Y))

+ dO4~((~°~R)°,Y) + d04(X, (.9~~R)U)

= R0~l~I~ + dO ,((9.f)xR)U, Y)_h.~R(x)

= hR(lx ~l) + dO,~((~xR)°,Y) — hlYR(x)l+

= dO~((S~xR)v,Y) + hlR(x)yJ

= dO~((
2~’xR)’,Y) + do

4.~, j5
Thesecondassertionof thetheoremnow follows.

Thefirst assertionis easily verified by taking~ = av andarguingsimilarly. •

COROLLARY 1. The tensor fields R and R are irk. -related, in the sensethat

7r,~.*oRRo7r,~*. •

COROLLARY 2. If Q is anothertype (1, 1) tensorfield on Ar then

R(QU) = (Q o R)
5.

Proof

d~.(,~‘(Qt)),a”) = S~’RUdO~(Q~’a”) = 0
dO~(.(Q”),X) = 2

8~(d~~~(Q”, X))

— do4, ([R, Q]”, X) + dO~(QU (2~R)”)

= hRQ(x)— hIRQI(x)

= hQR(%)

= dO4,, ((Q c R)u,X)

from which the result follows.
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Finally, it is easyto prove the following result, by evaluatingbothsideson a

vertical anda completelift, usingthe formulaeobtainedin Theorem1.

COROLLARY 3. For any vectorfield X on Ar

We now derive some relationshipsbetweenthe Nijenhuis tensor of a type
(1, 1) tensoron Ar and the Nijenhuistensorof its completelift to T*Ar.

We first remind the readerthat if R is any type (I, I) tensor,its Nijenhuis
tensorNR is the type (1,2) tensorgiven by

NR(X, Y)=

= R2([X, Y]) + [R(X), R(Y)} —R([R(X), Y]) —R([X, R(Y)]).

Thismay be rewritten as (LXNR)(Y) = NR(X, Y), where LXNR denotesthetype

(I, I) tensor —R~

LEMMA 1. For any type (1, 1) tensorR on Ar

~2(av) = R2(a)”

~2(~Y) ~R2(X) + (~‘xR2)” + (L,~NR)”.

Proof Theseformulae follow directly from thosein Theorem I and the defi-
nition of LXNR. .

LEMMA 2. For any type (1, 1) tensorRon Ar

N~(a”,,3”) = 0

N~(X~,a”) =

N~”, Y) =NR(X, Y) + (tIXYINR + .~‘y(LxNR)—~‘x(LYNR))”.

Proof Again, the proof consists of calculationsusing the formulae given in

Theorem 1, and in this case also the second formula in Lemma 1. Weshall derive

thelast formula as anexample.

IV~(X,Y) =

= ~2([~ )7j) + ~ R(Y)] — ~([~(~), Y]) — R([A~ R(Y)1)

= ~2([j2~y]) + [R(X) + (2~R)”,1~’) + (5f~R)”]

R([R(X) + (~‘~j?)”, Y])R([X~ R(Y) +
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= ~2([~7]) + [R(X), R(Y)] — R([R(X), Y]) — R([X, R(Y)])

+ [(~~‘xR)”, R(fl] + [R(x), (2’~R)”1+ [(2’~R)”, (.~~R)”]

_R([(~xR)”, YI)—R([X, (~‘~R)”])

=NR(X,Y) + (LIxYINR)” + (Q(xfl)U

where the type (1, 1) tensor~(x Y) ~ Ar is given by

() ~27 D2_~’ 0~(X,Y) ‘~ IX,Yl FR(X),Yl — IX,R(Y)l
— ~‘R(Y)

27XR + ~‘R(X) £~‘~R

+ ~ ~~R] + ~‘y ~R o R — o R

R o~
1xy1R~ ~‘R(X)R ~

+ ~ .~yRm~fyRof1~R

=

22Y(2’R(x)RR ~$~~‘xR) ~‘x(~’R(Y)R_Ro 2’~R).

Thus

N~(X~Y)= NR(X, Y) + ~lX, YJNR+ ~‘y(~NR) — ~~‘x(tYNR))”

asasserted.

From these two lemmas there follows

THEOREM2. If a type(1, 1) tensor R on Ar satisfiesR2= 0 and = 0 then
its completelift hassimilar properties:

N~=0.

4. THE CASE WHERE THE BASE IS A TANGENT BUNDLE

Wenow specialise to the case where the base manifold Ar is alreadythetangent

bundle ~ : TA! -+ A! of another manifold A!. Weshall be concerned therefore
with lifting geometrical objects from TA! to T*TA!, and in particular with the
complete lift of the canonical integrable almost tangent structure on TA!. The

almost tangent structure on TA! is a type (1, 1) tensor, which is often called the
vertical endomorphism. We shall denote it by S. It satisfies the conditions

kerS=imS,whenceS2 0, (the condition for being an almost tangent structure);
and N~= 0 (the condition of integrability).

THEOREM3. The completelift ~ of S to T*TA! is also an integrabie almost
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tangentstructure. With its aid, T*TAI may be given the structureof a tangent

bundle,and is in fact diffeotnorphicto TT*A!.

Proof By Theorem 2, ~2 = 0. It follows that im .~ ~ ker S. But dim ker ~ +

+ dim im ~ = 2 dim TA!, so that dim irn .~“‘~ dim TA!, with equality implying
that im S = ker ,~. We show that dim im ,~r dim TA!.

For any I-form a and vector field X on T

= 5(a)” S(X~)= 5(X) +

Now let (3 be any basic I-form on TA!: there is a 1-form a on TA! such that

13 = S(a), and therefore (3” E im S. Again, let Y be any vertical vector field on
TA! which is the vertical lift of a vectorfield Z on A!. Thenif ZC’ denotesthe
completelift of Z to TA!, we have V = S(Zc’); moreover, £/‘~,S = 0, and so

Y = S’(Z~’)E im S. Thus if ~Ea} is a local basisof vectorfields onA!, and{w’~
the dual local basis of I-forms, the vector fields {(r* ~O)U E0”J on T*TA!,

where the superscript v denotes the vertical lift to the tangent bundle,belong
to im S. They are clearly linearly independentand dim TA! in number, which
proves that dim im S~’dim TA!, as required.

Thus ~ is an almost tangentstructure. The fact that it is integrable follows

from Theorem 2.
It is true for any integrable almost tangent structure that its image,or equiva-

lently kernel, distribution is integrable in the senseof Frobenius’sTheorem.In
this case the image distribution has, over a suitable open subset of A!, a local

basis consisting of complete, pairwise commuting vectorfields: the vectorfields
given abovehave theseproperties,sincevertical lifts to eithera tangentor a co-
tangent bundle are necessarily completeas they are effectively affine vector
fields in the fibres, and the completelift of a completevectorfield is necessarily

complete; furthermore these vector fields do commute pairwise as a consequence
of the bracket relations for complete and vertical lifts. Thus each leaf of the
image distribution is diffeomorphic to R

2~,where m = dim A!, or at worst to
a quotientspaceof it by a discretegroupof translations.But the latterpossibility
is ruled out by the fact that the leaf projectsonto a fibre of TA!, and is itself
fibered by vector subsapces of the fibres of T*T./l! -+ TA!. Thus the leavesof

theimagedistribution areeachdiffeomorphic to R2m

We next define an imbeddingof T*A! into T*TA!. Considerthezero section
of TA!, which wemay identify with A! itself. Thetangentspaceto TA! at a

point (x, 0) in A!
0 hasa direct sum decompositionT(XO)TA! = 0 i” where

~“ is the subspace consisting of vectors tangent to the zero section and A! the
subspace consisting of vectors tangent to the fibre, that is, the vertical subspace.
Each of these is a copy of T~A!. Define a map T*A! -+ T*TA! by mapping
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(x, p) to thecovector~at (x, 0) E TA! definedin terms of the direct sum decom-

position by ((z, u), ~) = Ku, p). Thus T*A! is identified by this map with TA!~,

the annihilator, along the zero section A!0 of TA!, of the tangent spaces to

A!0. Under the projection 7TTA!: T*TA! -÷ TA! the submanifold~TA!’0 maps
onto A!

We now show that TA!~~is a cross-sectionof the distribution im S, that is to

say, that it intersectseachof its leavesin exactlyone point. The projection of

any leaf onto TA! is a fibre of r~,andthereforeintersectstheprojection A!0 of
TA!’~in exactly one point, say (x, 0). The leafthereforeintersectsthe restriction

of T*TA! to TJ1’~in a subset of the fibre over (x, 0), that is, T~0)TA!.Now

the restriction of the distribution to this vector spaceis the subspacegenerated

by the vertical lifts to T~0)TAI of basic covectorsat (x, 0). In terms of the

direct sum decomposition used to construct TAl~~this is the annihilatorof the
tangent space to the fibre of r~, which is complementary to the annihilator of

the tangent space to the zero section. Thus the leaf of the distribution im S

intersects T~Ø)TA! in exactly one point, the zero covector; and so the leaf

intersects TA!~in exactly one point.

Thus T*TA! is the total space of a vector bundle : T*TA! -÷ TA!’~

whose fibre~
7are the leaves of the distribution im S. Let i~idenote the imbedding

T*A! -÷ T*TA!. Then at each point (x, p) E T*Al the map ‘,1~ is a linear iso-
morphism of T(XP)T*A! with the tangent space to the image T~/#’~j at Vi(x, p).

But T.if/I~is a cross-section of the distribution im 5, and so its tangent space at
any point is complementary to the image space of S at that point. Thus ‘~, (x,p)

maps the tangent space to TA!~ at ~,ti(x,p) linearly and isomorphically onto
im ~ ~,~• Nowim S~(x ~, ‘is the tangent space to the leaf of the image distribution

through iJ.i(x, p), and may be identified with the leaf itself, since it is a vector
space. The map ‘I’ = I o c ~1í,.defined in this way, where I represents the identi-
fication of the tangentspaceto a vectorspaceat its origin with thevectorspace

itself, is a diffeomorphism of TT*A! with T*T./l1 which is a linear bundle map
with respect to the vector bundle structures rT~.J, : TT*Al~* T*.Il and

T*TA! -+ TA!’
0 andmatchesup theintegrablealmosttangentstructureson

eachof the two manifolds. U

The maps introducedin the proof of Theorem3 may be convenientlyincor-
poratedinto a commutativediagram:
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‘I,
TT*A! ,T*T.Ai

TTJI

T*A!

ThefibrationTT.,~ hasanotherinterestingproperty,as follows.

THEOREM 4. The fibration TT~~: T*TA! -+ TJ(’0 is Lagrangian with respect to
the canonical symplecticstructure of T*TA1, and TA!’0 is a Lagrangian cross-

section.

Proof For any basic 1-forms a and~3on TA! and any vertical lifts V and Wto

TA!of vectorfields onA!,

dOT~(a”,(3”)=0;

dOT,,(a”, V) = it~ ~(V, a)= 0

becauseV is vertical anda basic;and

dOTs, (V. I~)= h1~~1= 0

becausethe bracketof two vertical lifts to TA! is zero. Since thesevectorfields

spanthe distribution whoseleavesare the fibres of it follows that the fibra-
tion is Lagrangian.

A vertical lift a” is tangent to TA!~ if and only if the I-form a on TA! an-
nihilatesthe tangentspacesto the zero sectionA! o. A completelift X, on the
otherhand,is tangentto TA!’0 if and only X is tangentto A!0. If a”, (3”, Xand

Vare tangentto TA!’0 then,on TA!~,

dO~~(a”, [3”) = 0;

dU~,~(a”,X)=ITTJI *(X, a)= 0

because X is tangent to A!0 and a annihilatesvectorstangentto it; and

dOT,~(X,Y)=h1~~1=0

since [X, Y] is tangent to A!0, while the value of h1~~ at any point of TA!~

involves the pairing of [X, Y] with a covectorwhichannihilatesvectorstangent
to A!0. Thus TA!’0 is a Lagrangian submanifold of T*TA!. U
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According to a theorem of Weinstein [17], if a symplectic manifold hasa

Lagrangian foliation which admits a cross-sectionwhich is also a Lagrangian

submanifold then a neighbourhood of the cross-sectionis symplectomorphic

to a neighbourhood of the zero section in the cotangentbundle of the cross-

section, in such a way that the fibres of the two manifolds correspond. Thus
in the present case we are assuredof the existenceof a symplecticbundledif-

feomorphism T*TA! -÷ T*T*A!, at least in neighbourhoods of the correspond-

ing cross-sections.The fact that eachof thesemanifoldsis a vectorbundlemeans

that the diffeomorphism is global and indeed fibre linear. In fact, we are ableto
give an explicit construction for this diffeomorphism; we describethis construc-

tion in the appendix.

5. DILATION FIELDS

As well as the (almost) tangent structure of T*TA! we must consider the

associateddilation field.
The dilation field ~ on TA!, the infinitesimal generator of dilations

(x, u)I-+ (x, etu), satisfies

= 0

2~,S=—S

~svanisheson the zero section

andthesepropertiesdetermineit uniquely. From them follow certainproperties

of thecompletelift ~ of L~to T*T.,ft”.

LEMMA 3. Theconmpletelift of L~satisfies

Proof

£°-~S=2’L,S=—S

as required. U

On the other hand, T*TA! carriesa dilation field A* by virtue of the fact that
it is a cotangent bundle. When one takes the Lie derivative with respect to A* of
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a geometric object on T*TA! which is homogeneous in the fibre coordinates one
obtains a result which incorporates the homogeneity degree in the manner of
Euler’s Theorem on homogeneous functions. The vector field L~* has the fol-

lowing propertiesin relationto 5:

LEMMA 4. The dilation field !~*satisfies

=5”

~ 0.

Proof Forany 1-forma andvectorfield X on TA!

dOr~(3(L~*),av)’ 2’sv dOTA,(L~*,au)=O

dO~,
4,(~(~*),X) = I!~(dOT~(~*,,~‘))

— dOt, ~ .~‘)+ dO2~,~(~*,(~x~~”)

=

since = — ..2~S” = 0, Sj” beinghomogeneousof degree0. Now

dOTAt. (~*,X) = ~ °r.ie’ = ~*h =

in view of thehomogeneityof h1. Consequently,

2U~’oT4Y (~*,X)) = 2’~h~= hs(x) = dOT~,. (S”, X).

Thefirst resultfollows.

Forthesecondweusethe formula

(~*~)(~)= ~ s]).
With ~ = a” theright handside becomes

[~*,5(a)U]~([/~*,aU})_5(a)U +S~(a”)= 0

since a vertical lift of a 1-form is, in effect, homogeneousof degree —. I. With
= we obtain for the right hand side

[A*,~)] = [A*,S(X) + ~-~‘~5~”1 = 0

because complete lifts of vector fields and vertical lifts of type (1, 1) tensor
fields are both homogeneous of degree 0. This completes the proof. U

Using these resultswe canobtain thedilation field associatedwith S.
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THEOREM 5. Time dilation fieldD associatedwith Sisgivenby

D = + z~.

Proof From Lemmas3 and4 we have

-~‘~÷ ~ = —

It remainsto be shown that D = + ~\* vanishes on the <<zero>> section TA!’0

of the fibration of T*TA! determinedby S. Now Ls generatesthe dilations

(x, u) h-~(x, etu) of TA!, which leave A! invariant. It follows that the one-
parametergroupgeneratedby !~mapsT to itself. In constructing the complete
lift of a vector field to a cotangentbundle one takes the inverseof the induced

map of cotangentvectors. Bearing this in mind, as well as the linearity of the

action, one seesthat A generateson T.A1’~ja one-parametergroup of transfor-

mations which may be written (x, p) ~ (x, e
tp) when that spaceis identified

with T*A!. On the other hand, i~’ generates the one-parametergroup

(x, p) m—* (x, etp). Thus the one-parameter groups generated by L~andm~’,both of
which leave TA!’

0 invariant, are inverses of each other when restricted to that

submanifold; so their generators satisfy !s = — A* there as required. U

6. COORDINATE FORMULAE

Before proceeding to an application, we collect together coordinate formulae
for someof the quantitiesdefinedin the preceedingsectionsof thepaper.

In the first place,given a manifold Ar with local coordinates(x’), andcoordi-

nates (x’, p1) on T*Ar adaptedto the cotangentbundle structure, we have

theexpressions

a
a” = a.

for the verticallift of a 1-forma = a. dx’, and

-~ a ax’ a
XX’— —/9.-- —

ax
1 ‘ ax’ ap

1

for the completelift of a vector field X = X’a/ax’. The vertical lift of a type

(I, l)tensorfieldR =R,’(a/ax’)® dx’ is

a
R” = p1R) —

a~
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and its completelift is

a a faRt öRk a
R = RJ — ®dx + — ® dp, + ~k — — ® dv1.

ax’ ap
1 \ a~’ ax’ ap,

We specialisenow to the case Ar = T./N. We take tangentbundle coordinates
(x’, u’) on TA! with correspondingcoordinates(x’, u~,y,, u.) on T*TA!. The

vertical endomorphism on TA! is given by

a
S=—--®dx’

au’

andits completelift by

a a
S=— Odx

t+— ~du..
au’ a

3~,

Its imagedistributionis spannedby the coordinatevectorfields a/au’ anda/ay,.
Theimbedding~,1’: T*A! -+ T*TA! hasthe coordinaterepresentation

(x
1,p,) F-l-(x,0,0,p,).

The point with coordinates(xt, p
1, r’, s1) in TT*A! correspondsto the vector

a a
r’— ~

ax’ ‘

at the point (x
t, p.) in T*A! ; its imageunder~1i~is the vector

a a
r’— +s. —

ax’

at the point (xt, 0, 0, p,) in T*T.,ft’. The resultof applyingStothis is thevector

a a
re— +~.—

au’
tangent to the fibre of which determinesthe point with coordinates

(x’, r, s~,p~)in T*TA!. Thusthe diffeomorphism~I’ : TT*A! -÷T*TA! derivedin
Theorem3 hasthe coordinaterepresentation

(x’, p~,r’, s,) h+ (x’, r’, s~,p
1).

(The simplicity of this coordinaterepresentationmakesa coordinatedefinition

of ‘I’ seem appealing:but it is worth pointing out that the confirmation that
the map is actually well-defined, by considerationof the effects of coordinate
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transformations, is neitherstraightforwardnor informative).

The three dilation-related vector fields discussedin Section 5 are given by

a a
A=u’ — —U.—--—

au’ ‘ a~,

a a
A*=y._ +u.—

ay, ‘

a
D = u’ —- + y. —.

au’ ‘

7. APPLICATION: ADJOINT SYMMETRIES AND THE LAGRANGIAN
EXTENSION OF SECOND-ORDER SYSTEMS

Let us first make some general commentsabout the possible relevanceof
lifting objects,from a manifold to its tangentor cotangentbundle, to the study

of dynamicalsystems.

Supposethat a manifold Ar is the natural carrier spacefor somedynamical

system.Whilst it is not to be expectedthat essentiallynew featureswill frequen-

tly be discoveredby considerationof structureslifted from Arto T.Yor T*Ar,

it can neverthelessadvance our understandingif we look at things from the

vantagepoint of oneor other of thesebundlesratherthan in termsof A/ itself.

A nice example of the benefitsto be gainedis given by Tulczyjew’s description

of mechanicsin terms of special symplecticstructures [15], in which the La-

grangianand the Hamiltonian forms of mechanicsappear— loosely speaking as

two different manifestationsof the same Lagrangiansubmanifold of TT*A!.A

key role in this description was played by the diffeoniorphism ‘I’ TT*A! —~

-÷ T*TA!, the geometryof which we haveunravelledabove. Note further that a

similar approachhasalso proved to be useful in field theory, in particularwith

respectto theenergy-momentumtensor(see[7]).

Our presentapplication is intendedto shednew light on the meaningof so-

called adjoint symmetriesof an arbitrary second-orderdifferential equationfield

F on TA!. Among other things, it was shown in [12] that adjoint symmetries,

which are related to invariant 1-forms, cangive rise to first integralsor cangene-

rate,under appropriatecircumstances,a Lagrangianfor the system.Suchpheno-

mena are much better understoodwhen they are related to symmetry vector

fields of a systemwhich is known a priori to be Lagrangian.New insights in the

role of adjoint symmetries can therefore be expectedif we lift the relevant

objectsto T*TA! and relate them to the Lagrangian extension of F, referred to
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in the Introduction.

Let us first recall some definitions andresults from [11, 12]. To every second-
order equation field F on TA! we associatethe following two sets,of I-forms

and vectorfields respectively:

= (aE~*(TA!)I2r(S(a))=a},

= ~XE~T(TA!)S([F, X]) = o}.
We haveat our disposalthe following projection operators:

.~T*(TA!)~+.~tj~, a~.*’1r~(a)=~

~r :.~T(TA!)-*.fC~, X—~mr~(X)=X+S([F,X]).

A 1-form a on TA! is said to be an adjoint symmetry of F if aE ~ and

a E~ Anequivalentformulation is thata is anadjoint symmetryif andonly if

is an invariant form for F. In coordinates, an adjoint symmetry is of the
form a = a, du’ + F(a,) dx’, where the functions a, satisfy theadjoint linear

variationalequationsof F.

The Lagrangianextensionof F to T*TA! is obtained as follows. The vector

field F on TA! inducesa function on T*TA! (as does every vector field), namely
the function h~= (F, °T~’>~ChoosingL hr, and using the tangent bundle
structureof T*TA!we proceedto constructa Lagrangianvector field FL in the
usual way, that is, we introducethe Poincaré-Cartan1-form 0L = S(dL) and

denoteby FL the vectorfield determinedby
i. dO =—dE
rL L L

whereEL is the energy function associatedto L. The function hr is fibre linear
with respectto the cotangentbundlestructure,but not with respectto the tan-

gent bundle structure; in fact dOL is a symplectic form, as will becomeclear

from the nextargument.Thetype (1, 1) tensorfield £frS on TA! is non-singular:
in fact (~/‘ S)2 = I. Therefore r~

1,s~which henceforth will be abbreviated to

is a diffeomorphismof T*TA!. The main result,reportedin [1], statesthat

rj~dOrA, =—dOL,

that

r~L =—EL,

andthat

r~F= r~F= FL

Since ri., (which incidentally is equal to r~
1)is fibred over the identity map of

TA!, it follows from the last relation that FL projectsontoF. We call FL the
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Lagrangianextensionof F. Now FL is a second-orderdifferential equationfield,

so we can introducethe sets~ and~ rL on T*TA!, with the corresponding
projection operators lrr. The main point we wish to makehere is that adjoint

symmetries of F, when vertically lifted to T*TA!, becomesymmetriesof the

LagrangianextensionFL.

The following relations, similar in nature to the ones of Theorem 1, will be

useful in this section.

LEMMA 5. For a non-singulartype (1, 1) tensorfield R on Arwe have

r,~a =R(a)”

TRX+(R 0

Proof It is straightforwardto verify theseformuale in coordinates.

Before proceeding,we should issuea warning. In thoseformulaeof theprevious

sectionswherea compositionof (I, I) tensorsoccurred,the tensorswere regarded

as linear mapson the module of vector fields. In someof the following calcula-

tions we shall be dealingwith the dual picture, in which (I, I) tensorsact linearly

on I-forms. The order of composition is then of coursetheoppositeof the order

of composition for the action on vector fields. As an examplelet us recall that

for the actionon I-forms on TA! we havetheproperties

S = S a 2~S= — ~‘r~ 0 5.

LEMMA 6. For any 1-form a on TA! we have

~r (a”)=7r~(a)”.L

Proof Using various resultsof the previoussectionsand the fact that ‘r~ =

we have

[FL,a”J =[r~F,a”J=r~[F,r~~a°]

= r~~[F,~r~~”’ =

= r5r(2r5(~~”

It follows that
5~1~L’av]) = ((S a ~‘r5X~r( ~

= (S( Sé~.( ~/~~S(a))))”

= ~2r~5 0 ~ —
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= ~ —a”

whence

rL~) = a” + S([FL, a”]) =
2r~~~” =

as asserted.

THEOREM 6. For any 1-form a on TA!

(i) ~

(ii) a is an adjoint symm~try ofF ~ a”is a symmetryof FL.

Proof (i) Thisis animmediateconsequenceof Lemma6.

(ii) It follows from the first calculationin theproof of Lemma6 that

[a”, FL] = 0 ~ ~ = 0,

which is exactlywhatwe wishedto show.

Through the above statedequivalencewe are now in a positiontoreinterpret
properties of adjoint symmetriesof arbitrary second-orderequations in terms

of their more familiar counterpartsfor the LagrangiansystemFL. Alternatively
— and perhapsmore importantly — one could arrive at new propertiesof adjoint

symmetriesby searchingfor thoseknown propertiesof Lagrangiansystemswhich

project down to TA! with respect to the lifting processunder consideration.

For a start,let us discussthe casewhere an adjoint symmetrya of F satisfies

the additional requirement .~‘~S(a)= dF for somefunction F. Then, clearly,
F(F) is a constantc (on connectedcomponentsof TA!), andif c = 0, F is a first

integral. We haveshownin [12] that, if F itself happensto be Lagrangian,this is
nothing but a dual version of Noether’s theorem.The very simple relationship

betweenfirst integralsF andadjoint symmetriesa, expressedby ~‘~S(a) = dF,

is therefore seen to be more fundamental than Noether’s theorem,becauseit

equally applies when F is not Lagrangian. This should not be too surprising

because,as we are about to show, it is actually a manifestationof Noether’s

theoremfor the LagrangianextensionFL on T*TA!. For the sakeof clarity we

recall that a Noethersymmetry of a Lagrangiansystem is a vectorfield which
leavesboth the PoincarC-Cartan2-form and the energy functioninvariant.

LEMMA 7. For any 1-form a on TA! we have

~r5(a) = dF~ t dOL = — ~TJ( (dF)

cr”(EL) = — ~ (F, ~



488 N. CRAMPIN, F. CANT RUN, W. SARLET

Proof Wehave

~ dO~= — ~rj~ dOT# = — T~(Lrr a” dOT~,)

= — T~(t.~/~rS(a)U dO~A,)= —

= — A,

from which the resultreadily follows.

Forthe secondpart

ct”(EL ) = — a”(r~L) = — Tit(T~a”(L))

= — T~(2rS(a)”(hi.))

=—r~(4~(F, ~

=—7r~,(F, ~

asasserted. .

Thecontent of the nextstatementis now obvious.

THEOREM 7. If a is an adloint symmetry ofF on TA! then ~~S(a) = dF if and
only if a” is a symmetry of time Lagrangian extensionFL for which t.~,,dOL is

exact. Under thesecircumstancesF is a first integral of F on TA! if and onli’ if
a” is a IVoethers,ymninetryof FL on T*TA!.

Secondly,we wish to illustrate briefly how the reverseprocedureof projecting

down known resultsfor a Lagrangiansystemsuchas FL can, in principle, leadto

the discoveryof new propertiesconcerningadjoint symmetriesof F.

It is well known that a point symmetry of a Lagrangiansystemwhich is not of

Noether type producesan alternative(or subordinate)Lagrangian(see [9]). The

same thing may still happen for symmetries Y depending on the generalised

velocities, provided an extra condition is satisfied, guaranteeingthat the Lie

derivative with respect to Y of the original Poincaré-Cartan2-form is again a

Poincaré-Cartanform (see,for example,[10]). To be specific, for theLagrangian

system FL at hand, the extra condition amounts to the existenceof functions

L’ andf suchthat

~Y°L = °L’ + df.
The general idea now is to require that Y be a symmetryvector field of the form

a” for some I -form a on TA! andthat both L’ andf be thepull-backsof functions

on TA!. Under thesecircumstancesone can readily verify that the aboverequi-
rement will be satisfied,provideda is anadjoint symmetryof F with theproperty
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a = 7r~(dF)

for somefunction F. The expectationthenis that the latterrestrictionon adjoint

symmetrieswill lead to an interestingconclusion.And it surelydoes,becausewe

known from [12] that any second-orderequationfield F (a priori notof Lagran-
gian type), for which an adjoint symmetrya existsof the form a = ~r (dF), turns

out to be Lagrangianafterall, with F(F) as Lagrangian function.
There is a reasonablechance that the kind of techniqueemployed in this

application would also be fruitful in field theory. For example,our notion of
adjoint symmetry of a second-order equation was inspired by work of Gordon
[6] which originates from field theory {5], where the adjoint linear equation of a
partial differential equation appears to be more popularin defining the notion of
symmetry.Of course,before one can evenbegin to think of a further analogy,
one would needa notion of almost tangentstructureon jet bundlesand some

analogueof a second-orderequationfield. This is, however,exactly the kind of
questionwhich has been tackled in recentwork on jet fields by Saunders[13,

14], which is itself related to work on Cartan-Ehresmannconnectionsby Mangia-

rotti and Modugno [8].

APPENDIX

The construction of a linear bundle diffeomorphism1’ : T*TA! -+ T*T*A!,
which we give below, follows the first stageof thegeneralconstructiongivenby

Weinstein. At one stage in the proof we use the fact that, given a vector at a

point of T*TA! which is tangent to the fibre of r7,A,, onemay alwaysfind a
local vector field which generatesfibre translations,leavesdO~A,invariantand

agreeswith the given vector at its point of definition. To see this, observefirst

that translationsin the fibre of TT4 leavedOT~finvariant, provided, in the case

of thosecoming from the vertical lifts of basic 1-forms,that these I-forms are

closed. This follows from the general formulae £Zf~O~.= ir aand 2~O~. = 0

quoted in Section 2. The remainder of the argument relies on the fact that a given

covectorat a point can always be regardedas originating from a closedI-form
definedon a neighbourhoodof that point.

In theproof of the theoremwe shall usethe following result.

LEMMA 8. The dilation field D satisfies

~‘D
0TA, 0T.11~

Proof Wehave

= 0
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becausethe Lie derivativeof ~ alongany completelift vanishes,and

~~2~*O~A, 0T..#

by homogeneity.

THEOREM 8. T*TA! is diffeomorphic to T*T*A! by a map which is a linear
bundle map wit/i respect to the vector bundle structuresdefinedby ~ and

~~*A, respectively, which is fibred over : TA!~ .. T’~..#, and wimicim is a
symplectomorphismwitim respectto time canonical syinplectic structures of time

two cotangentbundles.

Proof We shall define a map c1 : T*TA/’ -~ T*T*A! by using the vector space

structure of the fibres of : T*TA! —* TA!’
0 and : T*T*./f// -÷ T*A!.

To any point q E T*TA! therecorrespondsa vector ~ at ?TH (q) E TA!’~which

is tangentto the fibre of ~ there, by the identification of avector spacewith

its tangentspaceat theorigin. The covectorr~.dO annihilatesthe tangentspace

to the fibre, sincethe fibration is Lagrangian,andamy thereforebe regardedas an

element of T~ TA!’ in fact taking the interior product with dO at
r2-A,(q) 0 TA!

~rT# (q) is an isornorphismbetweenthe tangentspaceto the fibre andthecotan-
gent spaceto the base,since the tangent spacesto the fibre and the baseare

complementaryLagrangiansubspaces.

We may therefore define by this procedurea fibre linear diffeomorphism

T*TA! -÷ T*TA!~’j.Composingthis with themap T*TA!’0 -+ T*T*A! inducedby

i,li gives the requiredmap ~b. It is clear from the constructionthat ~I is a dif-

feomorphism,is fibre linear, andis fibred over ~/i 1

It remainsto be shown that t is symplectic.The proof is basedon theobser-

vation that the vector ~ at
7~TA!(q) correspondingto the point q E T*TA! is the

translate to r~,(q) of Dq (where D is the dilation field associatedwith 5).
We showfirst that lt~*O~~A,= LD dO~A,.For any vector w at q E T*TA! we

have

(w, ~ 0T*.W)q = (4~w,0~*A,~‘I’(q) = (~Ts.A!~ 1(q))

= ~1*TTA! ~w, ~(q)) = (TTJI ~w,~ dO~A,)

= dOTA! (~,TTA, *~V)~~~(qy

By the remarks before the statementof the theorem,this final expressionis

equal to its translate backto q, alongthe vector ~ moreover,the vector v’ and

its translate to ~ (q) havethe same projection under ~ ~.. Thus

(u’ cI~OT*# )q dOTa(Dq,W),
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from which the result follows.

It follows from Lemma8 that

cI*dO~~A,=d(LD dO~A,)=$f~dO~A,=dO~A,

andso 1 is symplectic,as required. U

Notice that, although 1 is symplectic,it is not the casethatcI~O~~A,=
0TJi~

In fact thesetwo 1-formsdiffer by anexactform:

d~*O~~A,°~A,=~ dO~A,_.~’~O~A,=—d(D,O~A,).

As well as the diffeomorphism4 : T*TA! ~ T*T*A! definedabove,thereis a

standarddiffeomorphism TT*A! -÷ T*T*A! constructedusing the symplectic
structureof T*A!. It is not difficult to show that the two constructionsare
consistent,in the sensethat the following diagramcommutes:

‘I,
TT*A! T*TA!

T* T*A!

In coordinates,the construction of the symplectomorphism1 : T*TA! -~

-+ T*T*A! proceedsas follows. The canonical2-form on T*TA!is

dO~A,=dy~Adx’+du
1Adu’.

The point (x’, u, y1, u1) in T*TA! determinesthevector

a a
Ui— +yf —

au’ ay,

at (x’, 0, 0, v,) in 7’*’~.Its interior productwith ~ is the covector

dx~— u’ du1.

The map4 thereforehasthe coordinaterepresentation

(x’, u~, y1, u,) ~ (x’, v,,, y1, — u’).

The map TT*A! -+ T*T*A! basedon the canonical 2-form dOA, is given by

(x’, p., r’, s,) t—~(x’, p,, s~,—

which is the composition of 1 with the diffeomorphism TT*J1 -+ T*TA!.
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